Any integer n can be expressed as a sum of kth powers. You might know the most famous example, 1729, which can be expressed as a sum of two cubes in two different ways, 10^3 + 9^3 and 12^3 + 1^3. It can also be expressed as 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + ... + 1^3, that is, 1^3 added up 1729 times. On this page, solutions like that will be abbreviated in the form x(y^z), so our example would be 1729(1^3).
For some integers, n(1^k) is the only available solution, specifically, for all n < 2^k. For all others, a solution of much fewer kth powers than n is available. In the table below, I've tried to find the solution using the fewest powers. Solutions of the form n(1^k) are implied when a given cell is blank. In the draft version, some cells will show things like "^3 + ^3" because I haven't gotten around to filling them in.
n | Σx^2 | Σx^3 | Σx^4 | Σx^5 | Σx^6 | Σx^7 | Σx^8 |
---|---|---|---|---|---|---|---|
4 | 2^2 | ||||||
5 | 2^2 + 1^2 | ||||||
6 | 2^2 + 2(1^2) | ||||||
7 | 2^2 + 3(1^2) | ||||||
8 | 2(2^2) | 2^3 | |||||
9 | 3^2 | 2^3 + 1^3 | |||||
10 | 3^2 + 1^2 | 2^3 + 2(1^3) | |||||
11 | 3^2 + 2(1^2) | 2^3 + 3(1^3) | |||||
12 | 3(2^2) | 2^3 + 4(1^3) | |||||
13 | 3^2 + 2^2 | 2^3 + 5(1^3) | |||||
14 | 3^2 + 2^2 + 1^2 | 2^3 + 6(1^3) | |||||
15 | 3^2 + 2^2 + 2(1^2) | 2^3 + 7(1^3) | |||||
16 | 4^2 | 2(2^3) | 2^4 | ||||
17 | 4^2 + 1^2 | 2(2^3) + 1^3 | 2^4 + 1^4 | ||||
18 | 2(3^2) | 2(2^3) + 2(1^3) | 2^4 + 2(1^4) | ||||
19 | 2(3^2) + 1^2 | 2(2^3) + 3(1^3) | 2^4 + 3(1^4) | ||||
20 | 4^2 + 2^2 | 2(2^3) + 4(1^3) | 2^4 + 4(1^4) | ||||
21 | 4^2 + 2^2 + 1^2 | 2(2^3) + 5(1^3) | 2^4 + 5(1^4) | ||||
22 | 2(3^2) + 2^2 | 2(2^3) + 6(1^3) | 2^4 + 6(1^4) | ||||
23 | 2(3^2) + 2^2 + 1^2 | 2(2^3) + 7(1^3) | 2^4 + 7(1^4) | ||||
24 | 4^2 + 2(2^2) | 3(2^3) | 2^4 + 8(1^4) | ||||
25 | 5^2 | 3(2^3) + 1^3 | 2^4 + 9(1^4) | ||||
26 | 5^2 + 1^2 | 3(2^3) + 2(1^3) | 2^4 + 10(1^4) | ||||
27 | 5^2 + 2(1^2) | 3^3 | 2^4 + 11(1^4) | ||||
28 | 5^2 + 3(1^2) | 3^3 + 1^3 | 2^4 + 12(1^4) | ||||
29 | 5^2 + 2^2 | 3^3 + 2(1^3) | 2^4 + 13(1^4) | ||||
30 | 5^2 + 2^2 + 1^2 | 3^3 + 3(1^3) | 2^4 + 14(1^4) | ||||
31 | 5^2 + 2^2 + 2(1^2) | 3^3 + 4(1^3) | 2^4 + 15(1^4) | ||||
32 | 2(4^2) | 4(2^3) | 2(2^4) | 2^5 | |||
33 | 2(4^2) + 1^2 | 4(2^3) + 1^3 | 2(2^4) + 1^4 | 2^5 + 1^5 | |||
34 | 5^2 + 3^2 | 4(2^3) + 2(1^3) | 2(2^4) + 2(1^4) | 2^5 + 2(1^5) | |||
35 | 5^2 + 3^2 + 1^2 | 3^3 + 2^3 | 2(2^4) + 3(1^4) | 2^5 + 3(1^5) | |||
36 | 6^2 | 3^3 + 2^3 + 1^3 | 2(2^4) + 4(1^4) | 2^5 + 4(1^5) | |||
37 | 6^2 + 1^2 | 3^3 + 2^3 + 2(1^3) | 2(2^4) + 5(1^4) | 2^5 + 5(1^5) | |||
38 | 5^2 + 3^2 + 2^2 | 3^3 + 2^3 + 3(1^3) | 2(2^4) + 6(1^4) | 2^5 + 6(1^5) | |||
39 | 5^2 + 3^2 + 2^2 + 1^2 | 3^3 + 2^3 + 4(1^3) | 2(2^4) + 7(1^4) | 2^5 + 7(1^5) | |||
40 | 6^2 + 2^2 | 5(2^3) | 2(2^4) + 8(1^4) | 2^5 + 8(1^5) | |||
41 | 5^2 + 4^2 | 5(2^3) + 1^3 | 2(2^4) + 9(1^4) | 2^5 + 9(1^5) | |||
42 | 5^2 + 4^2 + 1^2 | 5(2^3) + 2(1^3) | 2(2^4) + 10(1^4) | 2^5 + 10(1^5) | |||
43 | 5^2 + 2(3^2) | 3^3 + 2(2^3) | 2(2^4) + 11(1^4) | 2^5 + 11(1^5) | |||
44 | 6^2 + 2(2^2) | 3^3 + 2(2^3) + 1^3 | 2(2^4) + 12(1^4) | 2^5 + 12(1^5) | |||
45 | 6^2 + 3^2 | 3^3 + 2(2^3) + 2(1^3) | 2(2^4) + 13(1^4) | 2^5 + 13(1^5) | |||
46 | 6^2 + 3^2 + 1^2 | 3^3 + 2(2^3) + 3(1^3) | 2(2^4) + 14(1^4) | 2^5 + 14(1^5) | |||
47 | 6^2 + 3^2 + 2(1^2) | 3^3 + 2(2^3) + 4(1^3) | 2(2^4) + 15(1^4) | 2^5 + 15(1^5) | |||
48 | 3(4^2) | 6(2^3) | 3(2^4) | 2^5 + 16(1^5) | |||
49 | 7^2 | 6(2^3) + 1^3 | 3(2^4) + 1^4 | 2^5 + 17(1^5) | |||
50 | 2(5^2) | 6(2^3) + 2(1^3) | 3(2^4) + 2(1^4) | 2^5 + 18(1^5) | |||
51 | 7^2 + 2(1^2) | 3^3 + 3(2^3) | 3(2^4) + 3(1^4) | 2^5 + 19(1^5) | |||
52 | 6^2 + 4^2 | 3^3 + 3(2^3) + 1^3 | 3(2^4) + 4(1^4) | 2^5 + 20(1^5) | |||
53 | 7^2 + 2^2 | 3^3 + 3(2^3) + 2(1^3) | 3(2^4) + 5(1^4) | 2^5 + 21(1^5) | |||
54 | 6^2 + 2(3^2) | 2(3^3) | 3(2^4) + 6(1^4) | 2^5 + 22(1^5) | |||
55 | 7^2 + 2^2 + 2(1^2) | 2(3^3) + 1^3 | 3(2^4) + 7(1^4) | 2^5 + 23(1^5) | |||
56 | 6^2 + 4^2 + 2^2 | 7(2^3) | 3(2^4) + 8(1^4) | 2^5 + 24(1^5) | |||
57 | 7^2 + 2(2^2) | 2(3^3) + 3(1^3) | 3(2^4) + 9(1^4) | 2^5 + 25(1^5) | |||
58 | 7^2 + 3^2 | 2(3^3) + 4(1^3) | 3(2^4) + 10(1^4) | 2^5 + 26(1^5) | |||
59 | 2(5^2) + 3^2 | 2(3^3) + 5(1^3) | 3(2^4) + 11(1^4) | 2^5 + 27(1^5) | |||
60 | 2(5^2) + 3^2 + 1^2 | 2(3^3) + 6(1^3) | 3(2^4) + 12(1^4) | 2^5 + 28(1^5) | |||
61 | 6^2 + 5^2 | 3^3 + 4(2^3) + 2(1^3) | 3(2^4) + 13(1^4) | 2^5 + 29(1^5) | |||
62 | 7^2 + 3^2 + 2^2 | 2(3^3) + 2^3 | 3(2^4) + 14(1^4) | 2^5 + 30(1^5) | |||
63 | 6^2 + 3(3^2) | 2(3^3) + 2^3 + 1^3 | 3(2^4) + 15(1^4) | 2^5 + 31(1^5) | |||
64 | 8^2 | 4^3 | 4(2^4) | 2(2^5) | 2^6 | ||
65 | 7^2 + 4^2 | 4^3 + 1^3 | 4(2^4) | 2(2^5) + 1^5 | 2^6 + 1^6 | ||
66 | 2(5^2) + 4^2 | 4^3 + 2(1^3) | 4(2^4) + 2(1^4) | 2(2^5) + 2(1^5) | 2^6 + 2(1^6) | ||
67 | 7^2 + 2(3^2) | 4^3 + 3(1^3) | 4(2^4) + 3(1^4) | 2(2^5) + 3(1^5) | 2^6 + 3(1^6) | ||
68 | 8^2 + 2^2 | 4^3 + 4(1^3) | 4(2^4) + 4(1^4) | 2(2^5) + 4(1^5) | 2^6 + 4(1^6) | ||
69 | 7^2 + 4^2 + 2^2 | 4^3 + 5(1^3) | 4(2^4) + 5(1^4) | 2(2^5) + 5(1^5) | 2^6 + 5(1^6) | ||
70 | 6^2 + 5^2 + 3^2 | 2(3^3) + 2(2^3) | 4(2^4) + 6(1^4) | 2(2^5) + 6(1^5) | 2^6 + 6(1^6) | ||
71 | 6^2 + 5^2 + 3^2 + 1^2 | 2(3^3) + 2(2^3) + 1^3 | 4(2^4) + 7(1^4) | 2(2^5) + 7(1^5) | 2^6 + 7(1^6) | ||
72 | 2(6^2) | 4^3 + 2^3 | 4(2^4) + 8(1^4) | 2(2^5) + 8(1^5) | 2^6 + 8(1^6) | ||
73 | 8^2 + 3^2 | 4^3 + 2^3 + 1^3 | 4(2^4) + 9(1^4) | 2(2^5) + 9(1^5) | 2^6 + 9(1^6) | ||
74 | 7^2 + 5^2 | 4^3 + 2^3 + 2(1^3) | 4(2^4) + 10(1^4) | 2(2^5) + 10(1^5) | 2^6 + 10(1^6) | ||
75 | 3(5^2) | 4^3 + 2^3 + 3(1^3) | 4(2^4) + 11(1^4) | 2(2^5) + 11(1^5) | 2^6 + 11(1^6) | ||
76 | 2(6^2) + 2^2 | 4^3 + 2^3 + 4(1^3) | 4(2^4) + 12(1^4) | 2(2^5) + 12(1^5) | 2^6 + 12(1^6) | ||
77 | 8^2 + 3^2 + 2^2 | 4^3 + 2^3 + 5(1^3) | 4(2^4) + 13(1^4) | 2(2^5) + 13(1^5) | 2^6 + 13(1^6) | ||
78 | 7^2 + 5^2 + 2^2 | 2(3^3) + 3(2^3) | 4(2^4) + 14(1^4) | 2(2^5) + 14(1^5) | 2^6 + 14(1^6) | ||
79 | 7^2 + 5^2 + 2^2 + 1^2 | 2(3^3) + 3(2^3) + 1^3 | 4(2^4) + 15(1^4) | 2(2^5) + 15(1^5) | 2^6 + 15(1^6) | ||
80 | 8^2 + 4^2 | 4^3 + 2(2^3) | 5(2^4) | 2(2^5) + 16(1^5) | 2^6 + 16(1^6) | ||
81 | 9^2 | 3(3^3) | 3^4 | 2(2^5) + 17(1^5) | 2^6 + 17(1^6) | ||
82 | 9^2 + 1^2 | 3(3^3) + 1^3 | 3^4 + 1^4 | 2(2^5) + 18(1^5) | 2^6 + 18(1^6) | ||
83 | 7^2 + 5^2 + 3^2 | 3(3^3) + 2(1^3) | 3^4 + 2(1^4) | 2(2^5) + 19(1^5) | 2^6 + 19(1^6) | ||
84 | 8^2 + 4^2 + 2^2 | 3(3^3) + 3(1^3) | 3^4 + 3(1^4) | 2(2^5) + 20(1^5) | 2^6 + 20(1^6) | ||
85 | 9^2 + 2^2 | 3(3^3) + 4(1^3) | 3^4 + 4(1^4) | 2(2^5) + 21(1^5) | 2^6 + 21(1^6) | ||
86 | 6^2 + 2(5^2) | 3(3^3) + 5(1^3) | 3^4 + 5(1^4) | 2(2^5) + 22(1^5) | 2^6 + 22(1^6) | ||
87 | 7^2 + 5^2 + 3^2 + 2^2 | 2(3^3) + 4(2^3) + 1^3 | 3^4 + 6(1^4) | 2(2^5) + 23(1^5) | 2^6 + 23(1^6) | ||
88 | 2(6^2) + 4^2 | 4^3 + 3(2^3) | 3^4 + 7(1^4) | 2(2^5) + 24(1^5) | 2^6 + 24(1^6) | ||
89 | 8^2 + 5^2 | 3(3^3) + 2^3 | 3^4 + 8(1^4) | 2(2^5) + 25(1^5) | 2^6 + 25(1^6) | ||
90 | 9^2 + 3^2 | 3(3^3) + 2^3 + 1^3 | 3^4 + 9(1^4) | 2(2^5) + 26(1^5) | 2^6 + 26(1^6) | ||
91 | 9^2 + 3^2 + 1^2 | 4^3 + 3^3 | 3^4 + 10(1^4) | 2(2^5) + 27(1^5) | 2^6 + 27(1^6) | ||
92 | 2(6^2) + 4^2 + 2^2 | 4^3 + 3^3 + 1^3 | 3^4 + 11(1^4) | 2(2^5) + 28(1^5) | 2^6 + 28(1^6) | ||
93 | 8^2 + 5^2 + 2^2 | 4^3 + 3^3 + 2(1^3) | 3^4 + 12(1^4) | 2(2^5) + 29(1^5) | 2^6 + 29(1^6) | ||
94 | 9^2 + 3^2 + 2^2 | 4^3 + 3^3 + 3(1^3) | 3^4 + 13(1^4) | 2(2^5) + 30(1^5) | 2^6 + 30(1^6) | ||
95 | 9^2 + 3^2 + 2^2 + 1^2 | 4^3 + 3^3 + 4(1^3) | 3^4 + 14(1^4) | 2(2^5) + 31(1^5) | 2^6 + 31(1^6) | ||
96 | 8^2 + 2(4^2) | 4^3 + 4(2^3) | 6(2^4) | 3(2^5) | 2^6 + 32(1^6) | ||
97 | 9^2 + 4^2 | 4^3 + 4(2^3) + 1^3 | 3^4 + 2^4 | 3(2^5) + 1^5 | 2^6 + 33(1^6) | ||
98 | 2(7^2) | 4^3 + 4(2^3) + 2(1^3) | 6(2^4) + 2(1^4) | 3(2^5) + 2(1^5) | 2^6 + 34(1^6) | ||
99 | 2(7^2) + 1^2 | 4^3 + 3^3 + 2^3 | 6(2^4) + 3(1^4) | 3(2^5) + 3(1^5) | 2^6 + 35(1^6) | ||
100 | 10^2 | 4^3 + 3^3 + 2^3 + 1^3 | 6(2^4) + 4(1^4) | 3(2^5) + 4(1^5) | 2^6 + 36(1^6) | ||
101 | 10^2 + 1^2 | 4^3 + 3^3 + 2^3 + 2(1^3) | 6(2^4) + 5(1^4) | 3(2^5) + 5(1^5) | 2^6 + 37(1^6) | ||
102 | 2(7^2) + 2^2 | 4^3 + 3^3 + 2^3 + 3(1^3) | 6(2^4) + 6(1^4) | 3(2^5) + 6(1^5) | 2^6 + 38(1^6) | ||
103 | 2(7^2) + 2^2 + 1^2 | 4^3 + 3^3 + 2^3 + 4(1^3) | 6(2^4) + 7(1^4) | 3(2^5) + 7(1^5) | 2^6 + 39(1^6) | ||
104 | 10^2 + 2^2 | 4^3 + 5(2^3) | 6(2^4) + 8(1^4) | 3(2^5) + 8(1^5) | 2^6 + 40(1^6) | ||
105 | 8^2 + 5^2 + 4^2 | 3(3^3) + 3(2^3) | 3^4 + 2^4 + 8(1^4) | 3(2^5) + 9(1^5) | 2^6 + 41(1^6) | ||
106 | 9^2 + 5^2 | 3(3^3) + 3(2^3) + 1^3 | 3^4 + 2^4 + 9(1^4) | 3(2^5) + 10(1^5) | 2^6 + 42(1^6) | ||
107 | 2(7^2) + 3^2 | 3(3^3) + 3(2^3) + 2(1^3) | 3^4 + 2^4 + 10(1^4) | 3(2^5) + 11(1^5) | 2^6 + 43(1^6) | ||
108 | 10^2 + 2(2^2) | 4(3^3) | 3^4 + 2^4 + 11(1^4) | 3(2^5) + 12(1^5) | 2^6 + 44(1^6) | ||
109 | 10^2 + 3^2 | 4(3^3) + 1^3 | 3^4 + 2^4 + 12(1^4) | 3(2^5) + 13(1^5) | 2^6 + 45(1^6) | ||
110 | 9^2 + 5^2 + 2^2 | 4(3^3) + 2(1^3) | 3^4 + 2^4 + 13(1^4) | 3(2^5) + 14(1^5) | 2^6 + 46(1^6) | ||
111 | 6^2 + 3(5^2) | 4(3^3) + 3(1^3) | 3^4 + 2^4 + 14(1^4) | 3(2^5) + 15(1^5) | 2^6 + 47(1^6) | ||
112 | 10^2 + 3(2^2) | 4^3 + 6(2^3) | 7(2^4) | 3(2^5) + 16(1^5) | 2^6 + 48(1^6) | ||
113 | 8^2 + 7^2 | 4^3 + 6(2^3) + 1^3 | 3^4 + 2(2^4) | 3(2^5) + 17(1^5) | 2^6 + 49(1^6) | ||
114 | 8^2 + 2(5^2) | 3(3^3) + 4(2^3) + 1^3 | 3^4 + 2(2^4) + 1^4 | 3(2^5) + 18(1^5) | 2^6 + 50(1^6) | ||
115 | 9^2 + 5^2 + 3^2 | 4^3 + 3^3 + 3(2^3) | 3^4 + 2(2^4) + 2(1^4) | 3(2^5) + 19(1^5) | 2^6 + 51(1^6) | ||
116 | 10^2 + 4^2 | 4^3 + 3^3 + 3(2^3) + 1^3 | 3^4 + 2(2^4) + 3(1^4) | 3(2^5) + 20(1^5) | 2^6 + 52(1^6) | ||
117 | 9^2 + 6^2 | 4^3 + 3^3 + 3(2^3) + 2(1^3) | 3^4 + 2(2^4) + 4(1^4) | 3(2^5) + 21(1^5) | 2^6 + 53(1^6) | ||
118 | 9^2 + 6^2 + 1^2 | 4^3 + 2(3^3) | 3^4 + 2(2^4) + 5(1^4) | 3(2^5) + 22(1^5) | 2^6 + 54(1^6) | ||
119 | 7^2 + 6^2 + 5^2 + 3^2 | 4^3 + 2(3^3) + 1^3 | 3^4 + 2(2^4) + 6(1^4) | 3(2^5) + 23(1^5) | 2^6 + 55(1^6) | ||
120 | 10^2 + 4^2 + 2^2 | 4^3 + 7(2^3) | 3^4 + 2(2^4) + 7(1^4) | 3(2^5) + 24(1^5) | 2^6 + 56(1^6) | ||
121 | 11^2 | 4^3 + 2(3^3) + 3(1^3) | 3^4 + 2(2^4) + 8(1^4) | 3(2^5) + 25(1^5) | 2^6 + 57(1^6) | ||
122 | 11^2 + 1^2 | 4^3 + 2(3^3) + 4(1^3) | 3^4 + 2(2^4) + 9(1^4) | 3(2^5) + 26(1^5) | 2^6 + 58(1^6) | ||
123 | 2(7^2) + 5^2 | 4^3 + 2(3^3) + 5(1^3) | 3^4 + 2(2^4) + 10(1^4) | 3(2^5) + 27(1^5) | 2^6 + 59(1^6) | ||
124 | 2(7^2) + 5^2 + 1^2 | 4(3^3) + 2(2^3) | 3^4 + 2(2^4) + 11(1^4) | 3(2^5) + 28(1^5) | 2^6 + 60(1^6) | ||
125 | 11^2 + 2^2 | 5^3 | 3^4 + 2(2^4) + 12(1^4) | 3(2^5) + 29(1^5) | 2^6 + 61(1^6) | ||
126 | 9^2 + 6^2 + 3^2 | 5^3 + 1^3 | 3^4 + 2(2^4) + 13(1^4) | 3(2^5) + 30(1^5) | 2^6 + 62(1^6) | ||
127 | 9^2 + 6^2 + 3^2 + 1^2 | 5^3 + 2(1^3) | 3^4 + 2(2^4) + 14(1^4) | 3(2^5) + 31(1^5) | 2^6 + 63(1^6) | ||
128 | 2(8^2) | 2(4^3) | 8(2^4) | 4(2^5) | 2(2^6) | 2^7 | |
129 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 1^5 | 2(2^6) + 1^6 | 2^7 + 1^7 | |
130 | 9^2 + 7^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 2(1^5) | 2(2^6) + 2(1^6) | 2^7 + 2(1^7) | |
131 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 3(1^5) | 2(2^6) + 3(1^6) | 2^7 + 3(1^7) | |
132 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 4(1^5) | 2(2^6) + 4(1^6) | 2^7 + 4(1^7) | |
133 | ^2 + ^2 | 5^3 + 2^3 | ^4 + ^4 | 4(2^5) + 5(1^5) | 2(2^6) + 5(1^6) | 2^7 + 5(1^7) | |
134 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 6(1^5) | 2(2^6) + 6(1^6) | 2^7 + 6(1^7) | |
135 | ^2 + ^2 | 5(3^3) | ^4 + ^4 | 4(2^5) + 7(1^5) | 2(2^6) + 7(1^6) | 2^7 + 7(1^7) | |
136 | 10^2 + 6^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 8(1^5) | 2(2^6) + 8(1^6) | 2^7 + 8(1^7) | |
137 | 11^2 + 4^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 9(1^5) | 2(2^6) + 9(1^6) | 2^7 + 9(1^7) | |
138 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 10(1^5) | 2(2^6) + 10(1^6) | 2^7 + 10(1^7) | |
139 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 11(1^5) | 2(2^6) + 11(1^6) | 2^7 + 11(1^7) | |
140 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 12(1^5) | 2(2^6) + 12(1^6) | 2^7 + 12(1^7) | |
141 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 13(1^5) | 2(2^6) + 13(1^6) | 2^7 + 13(1^7) | |
142 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 14(1^5) | 2(2^6) + 14(1^6) | 2^7 + 14(1^7) | |
143 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 15(1^5) | 2(2^6) + 15(1^6) | 2^7 + 15(1^7) | |
144 | 12^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 16(1^5) | 2(2^6) + 16(1^6) | 2^7 + 16(1^7) | |
145 | 9^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 17(1^5) | 2(2^6) + 17(1^6) | 2^7 + 17(1^7) | |
146 | 11^2 + 5^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 18(1^5) | 2(2^6) + 18(1^6) | 2^7 + 18(1^7) | |
147 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 19(1^5) | 2(2^6) + 19(1^6) | 2^7 + 19(1^7) | |
148 | 12^2 + 2^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 20(1^5) | 2(2^6) + 20(1^6) | 2^7 + 20(1^7) | |
149 | 10^2 + 7^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 21(1^5) | 2(2^6) + 21(1^6) | 2^7 + 21(1^7) | |
150 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 22(1^5) | 2(2^6) + 22(1^6) | 2^7 + 22(1^7) | |
151 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 23(1^5) | 2(2^6) + 23(1^6) | 2^7 + 23(1^7) | |
152 | ^2 + ^2 | 5^3 + 3^3 | ^4 + ^4 | 4(2^5) + 24(1^5) | 2(2^6) + 24(1^6) | 2^7 + 24(1^7) | |
153 | 12^2 + 3^2 | 1^3 + 5^3 + 3^3 | ^4 + ^4 | 4(2^5) + 25(1^5) | 2(2^6) + 25(1^6) | 2^7 + 25(1^7) | |
154 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 26(1^5) | 2(2^6) + 26(1^6) | 2^7 + 26(1^7) | |
155 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 27(1^5) | 2(2^6) + 27(1^6) | 2^7 + 27(1^7) | |
156 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 28(1^5) | 2(2^6) + 28(1^6) | 2^7 + 28(1^7) | |
157 | 11^2 + 6^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 29(1^5) | 2(2^6) + 29(1^6) | 2^7 + 29(1^7) | |
158 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 30(1^5) | 2(2^6) + 30(1^6) | 2^7 + 30(1^7) | |
159 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 4(2^5) + 31(1^5) | 2(2^6) + 31(1^6) | 2^7 + 31(1^7) | |
160 | 12^2 + 4^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) | 2(2^6) + 32(1^6) | 2^7 + 32(1^7) | |
161 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 1^5 | 2(2^6) + 33(1^6) | 2^7 + 33(1^7) | |
162 | 2(9^2) | 6(3^3) | 2(3^4) | 5(2^5) + 2(1^5) | 2(2^6) + 34(1^6) | 2^7 + 34(1^7) | |
163 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 3(1^5) | 2(2^6) + 35(1^6) | 2^7 + 35(1^7) | |
164 | 10^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 4(1^5) | 2(2^6) + 36(1^6) | 2^7 + 36(1^7) | |
165 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 5(1^5) | 2(2^6) + 37(1^6) | 2^7 + 37(1^7) | |
166 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 6(1^5) | 2(2^6) + 38(1^6) | 2^7 + 38(1^7) | |
167 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 7(1^5) | 2(2^6) + 39(1^6) | 2^7 + 39(1^7) | |
168 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 8(1^5) | 2(2^6) + 40(1^6) | 2^7 + 40(1^7) | |
169 | 13^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 9(1^5) | 2(2^6) + 41(1^6) | 2^7 + 41(1^7) | |
170 | 11^2 + 7^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 10(1^5) | 2(2^6) + 42(1^6) | 2^7 + 42(1^7) | |
171 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 11(1^5) | 2(2^6) + 43(1^6) | 2^7 + 43(1^7) | |
172 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 12(1^5) | 2(2^6) + 44(1^6) | 2^7 + 44(1^7) | |
173 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 13(1^5) | 2(2^6) + 45(1^6) | 2^7 + 45(1^7) | |
174 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 14(1^5) | 2(2^6) + 46(1^6) | 2^7 + 46(1^7) | |
175 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 15(1^5) | 2(2^6) + 47(1^6) | 2^7 + 47(1^7) | |
176 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 16(1^5) | 2(2^6) + 48(1^6) | 2^7 + 48(1^7) | |
177 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 17(1^5) | 2(2^6) + 49(1^6) | 2^7 + 49(1^7) | |
178 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 18(1^5) | 2(2^6) + 50(1^6) | 2^7 + 50(1^7) | |
179 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 19(1^5) | 2(2^6) + 51(1^6) | 2^7 + 51(1^7) | |
180 | 12^2 + 6^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 20(1^5) | 2(2^6) + 52(1^6) | 2^7 + 52(1^7) | |
181 | 10^2 + 9^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 21(1^5) | 2(2^6) + 53(1^6) | 2^7 + 53(1^7) | |
182 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 22(1^5) | 2(2^6) + 54(1^6) | 2^7 + 54(1^7) | |
183 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 23(1^5) | 2(2^6) + 55(1^6) | 2^7 + 55(1^7) | |
184 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 24(1^5) | 2(2^6) + 56(1^6) | 2^7 + 56(1^7) | |
185 | 11^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 25(1^5) | 2(2^6) + 57(1^6) | 2^7 + 57(1^7) | |
186 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 26(1^5) | 2(2^6) + 58(1^6) | 2^7 + 58(1^7) | |
187 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 27(1^5) | 2(2^6) + 59(1^6) | 2^7 + 59(1^7) | |
188 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 28(1^5) | 2(2^6) + 60(1^6) | 2^7 + 60(1^7) | |
189 | ^2 + ^2 | 5^3 + 4^3 | ^4 + ^4 | 5(2^5) + 29(1^5) | 2(2^6) + 61(1^6) | 2^7 + 61(1^7) | |
190 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 30(1^5) | 2(2^6) + 62(1^6) | 2^7 + 62(1^7) | |
191 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 5(2^5) + 31(1^5) | 2(2^6) + 63(1^6) | 2^7 + 63(1^7) | |
192 | ^2 + ^2 | 3(4^3) | ^4 + ^4 | 6(2^5) | 3(2^6) | 2^7 + 64(1^7) | |
193 | 12^2 + 7^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 1^5 | 3(2^6) + 1^6 | 2^7 + 65(1^7) | |
194 | 14^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 2(1^5) | 3(2^6) + 2(1^6) | 2^7 + 66(1^7) | |
195 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 3(1^5) | 3(2^6) + 3(1^6) | 2^7 + 67(1^7) | |
196 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 4(1^5) | 3(2^6) + 4(1^6) | 2^7 + 68(1^7) | |
197 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 5(1^5) | 3(2^6) + 5(1^6) | 2^7 + 69(1^7) | |
198 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 6(1^5) | 3(2^6) + 6(1^6) | 2^7 + 70(1^7) | |
199 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 7(1^5) | 3(2^6) + 7(1^6) | 2^7 + 71(1^7) | |
200 | 14^2 + 2^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 8(1^5) | 3(2^6) + 8(1^6) | 2^7 + 72(1^7) | |
201 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 9(1^5) | 3(2^6) + 9(1^6) | 2^7 + 73(1^7) | |
202 | 11^2 + 9^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 10(1^5) | 3(2^6) + 10(1^6) | 2^7 + 74(1^7) | |
203 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 11(1^5) | 3(2^6) + 11(1^6) | 2^7 + 75(1^7) | |
204 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 12(1^5) | 3(2^6) + 12(1^6) | 2^7 + 76(1^7) | |
205 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 13(1^5) | 3(2^6) + 13(1^6) | 2^7 + 77(1^7) | |
206 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 14(1^5) | 3(2^6) + 14(1^6) | 2^7 + 78(1^7) | |
207 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 15(1^5) | 3(2^6) + 15(1^6) | 2^7 + 79(1^7) | |
208 | 12^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 16(1^5) | 3(2^6) + 16(1^6) | 2^7 + 80(1^7) | |
209 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 17(1^5) | 3(2^6) + 17(1^6) | 2^7 + 81(1^7) | |
210 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 18(1^5) | 3(2^6) + 18(1^6) | 2^7 + 82(1^7) | |
211 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 19(1^5) | 3(2^6) + 19(1^6) | 2^7 + 83(1^7) | |
212 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 20(1^5) | 3(2^6) + 20(1^6) | 2^7 + 84(1^7) | |
213 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 21(1^5) | 3(2^6) + 21(1^6) | 2^7 + 85(1^7) | |
214 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 22(1^5) | 3(2^6) + 22(1^6) | 2^7 + 86(1^7) | |
215 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 23(1^5) | 3(2^6) + 23(1^6) | 2^7 + 87(1^7) | |
216 | ^2 + ^2 | 6^3 | ^4 + ^4 | 6(2^5) + 24(1^5) | 3(2^6) + 24(1^6) | 2^7 + 88(1^7) | |
217 | ^2 + ^2 | 6^3 + 1^3 | ^4 + ^4 | 6(2^5) + 25(1^5) | 3(2^6) + 25(1^6) | 2^7 + 89(1^7) | |
218 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 26(1^5) | 3(2^6) + 26(1^6) | 2^7 + 90(1^7) | |
219 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 27(1^5) | 3(2^6) + 27(1^6) | 2^7 + 91(1^7) | |
220 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 28(1^5) | 3(2^6) + 28(1^6) | 2^7 + 92(1^7) | |
221 | 11^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 29(1^5) | 3(2^6) + 29(1^6) | 2^7 + 93(1^7) | |
222 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 30(1^5) | 3(2^6) + 30(1^6) | 2^7 + 94(1^7) | |
223 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 6(2^5) + 31(1^5) | 3(2^6) + 31(1^6) | 2^7 + 95(1^7) | |
224 | ^2 + ^2 | 6^3 + 2^3 | ^4 + ^4 | 7(2^5) | 3(2^6) + 32(1^6) | 2^7 + 96(1^7) | |
225 | 15^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 1^5 | 3(2^6) + 33(1^6) | 2^7 + 97(1^7) | |
226 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 2(1^5) | 3(2^6) + 34(1^6) | 2^7 + 98(1^7) | |
227 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 3(1^5) | 3(2^6) + 35(1^6) | 2^7 + 99(1^7) | |
228 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 4(1^5) | 3(2^6) + 36(1^6) | 2^7 + 100(1^7) | |
229 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 5(1^5) | 3(2^6) + 37(1^6) | 2^7 + 101(1^7) | |
230 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 6(1^5) | 3(2^6) + 38(1^6) | 2^7 + 102(1^7) | |
231 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 7(1^5) | 3(2^6) + 39(1^6) | 2^7 + 103(1^7) | |
232 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 8(1^5) | 3(2^6) + 40(1^6) | 2^7 + 104(1^7) | |
233 | 13^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 9(1^5) | 3(2^6) + 41(1^6) | 2^7 + 105(1^7) | |
234 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 10(1^5) | 3(2^6) + 42(1^6) | 2^7 + 106(1^7) | |
235 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 11(1^5) | 3(2^6) + 43(1^6) | 2^7 + 107(1^7) | |
236 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 12(1^5) | 3(2^6) + 44(1^6) | 2^7 + 108(1^7) | |
237 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 13(1^5) | 3(2^6) + 45(1^6) | 2^7 + 109(1^7) | |
238 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 14(1^5) | 3(2^6) + 46(1^6) | 2^7 + 110(1^7) | |
239 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 15(1^5) | 3(2^6) + 47(1^6) | 2^7 + 111(1^7) | |
240 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 16(1^5) | 3(2^6) + 48(1^6) | 2^7 + 112(1^7) | |
241 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 17(1^5) | 3(2^6) + 49(1^6) | 2^7 + 113(1^7) | |
242 | 2(11^2) | ^3 + ^3 | ^4 + ^4 | 7(2^5) + 18(1^5) | 3(2^6) + 50(1^6) | 2^7 + 114(1^7) | |
243 | ^2 + ^2 | 6^3 + 3^3 | ^4 + ^4 | 3^5 | 3(2^6) + 51(1^6) | 2^7 + 115(1^7) | |
244 | 12^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 1^5 | 3(2^6) + 52(1^6) | 2^7 + 116(1^7) | |
245 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 2(1^5) | 3(2^6) + 53(1^6) | 2^7 + 117(1^7) | |
246 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 3(1^5) | 3(2^6) + 54(1^6) | 2^7 + 118(1^7) | |
247 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 4(1^5) | 3(2^6) + 55(1^6) | 2^7 + 119(1^7) | |
248 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 5(1^5) | 3(2^6) + 56(1^6) | 2^7 + 120(1^7) | |
249 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 6(1^5) | 3(2^6) + 57(1^6) | 2^7 + 121(1^7) | |
250 | 13^2 + 9^2 | 2(5^3) | ^4 + ^4 | 3^5 + 7(1^5) | 3(2^6) + 58(1^6) | 2^7 + 122(1^7) | |
251 | ^2 + ^2 | 2(5^3) + 1^3 | ^4 + ^4 | 3^5 + 8(1^5) | 3(2^6) + 59(1^6) | 2^7 + 123(1^7) | |
252 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 9(1^5) | 3(2^6) + 60(1^6) | 2^7 + 124(1^7) | |
253 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 10(1^5) | 3(2^6) + 61(1^6) | 2^7 + 125(1^7) | |
254 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 11(1^5) | 3(2^6) + 62(1^6) | 2^7 + 126(1^7) | |
255 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 12(1^5) | 3(2^6) + 63(1^6) | 2^7 + 127(1^7) | |
256 | 16^2 | 4(4^3) | 4^4 | 8(2^5) | 4(2^6) | 2(2^7) | 2^8 |
257 | ^2 + ^2 | 4(4^3) + 1^3 | 4^4 + 1^4 | ^5 + ^5 | 4(2^6) + 1^6 | 2(2^7) + 1^7 | 2^8 + 1^8 |
258 | ^2 + ^2 | 2(5^3) + 2^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 2(1^6) | 2(2^7) + 2(1^7) | 2^8 + 2(1^8) |
259 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 3(1^6) | 2(2^7) + 3(1^7) | 2^8 + 3(1^8) |
260 | 14^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 4(1^6) | 2(2^7) + 4(1^7) | 2^8 + 4(1^8) |
261 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 5(1^6) | 2(2^7) + 5(1^7) | 2^8 + 5(1^8) |
262 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 6(1^6) | 2(2^7) + 6(1^7) | 2^8 + 6(1^8) |
263 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 7(1^6) | 2(2^7) + 7(1^7) | 2^8 + 7(1^8) |
264 | ^2 + ^2 | 4(4^3) + 2^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 8(1^6) | 2(2^7) + 8(1^7) | 2^8 + 8(1^8) |
265 | 12^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 9(1^6) | 2(2^7) + 9(1^7) | 2^8 + 9(1^8) |
266 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 10(1^6) | 2(2^7) + 10(1^7) | 2^8 + 10(1^8) |
267 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 11(1^6) | 2(2^7) + 11(1^7) | 2^8 + 11(1^8) |
268 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 12(1^6) | 2(2^7) + 12(1^7) | 2^8 + 12(1^8) |
269 | 13^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 13(1^6) | 2(2^7) + 13(1^7) | 2^8 + 13(1^8) |
270 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 14(1^6) | 2(2^7) + 14(1^7) | 2^8 + 14(1^8) |
271 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 15(1^6) | 2(2^7) + 15(1^7) | 2^8 + 15(1^8) |
272 | ^2 + ^2 | ^3 + ^3 | 4^4 + 2^4 | ^5 + ^5 | 4(2^6) + 16(1^6) | 2(2^7) + 16(1^7) | 2^8 + 16(1^8) |
273 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 17(1^6) | 2(2^7) + 17(1^7) | 2^8 + 17(1^8) |
274 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 18(1^6) | 2(2^7) + 18(1^7) | 2^8 + 18(1^8) |
275 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 2^5 | 4(2^6) + 19(1^6) | 2(2^7) + 19(1^7) | 2^8 + 19(1^8) |
276 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 2^5 + 1^5 | 4(2^6) + 20(1^6) | 2(2^7) + 20(1^7) | 2^8 + 20(1^8) |
277 | 14^2 + 9^2 | 2(5^3) + 3^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 21(1^6) | 2(2^7) + 21(1^7) | 2^8 + 21(1^8) |
278 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 22(1^6) | 2(2^7) + 22(1^7) | 2^8 + 22(1^8) |
279 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 23(1^6) | 2(2^7) + 23(1^7) | 2^8 + 23(1^8) |
280 | ^2 + ^2 | 6^3 + 4^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 24(1^6) | 2(2^7) + 24(1^7) | 2^8 + 24(1^8) |
281 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 25(1^6) | 2(2^7) + 25(1^7) | 2^8 + 25(1^8) |
282 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 26(1^6) | 2(2^7) + 26(1^7) | 2^8 + 26(1^8) |
283 | ^2 + ^2 | 4(4^3) + 3^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 27(1^6) | 2(2^7) + 27(1^7) | 2^8 + 27(1^8) |
284 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 28(1^6) | 2(2^7) + 28(1^7) | 2^8 + 28(1^8) |
285 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 29(1^6) | 2(2^7) + 29(1^7) | 2^8 + 29(1^8) |
286 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 30(1^6) | 2(2^7) + 30(1^7) | 2^8 + 30(1^8) |
287 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 31(1^6) | 2(2^7) + 31(1^7) | 2^8 + 31(1^8) |
288 | 2(12^2) | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 32(1^6) | 2(2^7) + 32(1^7) | 2^8 + 32(1^8) |
289 | 17^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 33(1^6) | 2(2^7) + 33(1^7) | 2^8 + 33(1^8) |
290 | 13^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 34(1^6) | 2(2^7) + 34(1^7) | 2^8 + 34(1^8) |
291 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 35(1^6) | 2(2^7) + 35(1^7) | 2^8 + 35(1^8) |
292 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 36(1^6) | 2(2^7) + 36(1^7) | 2^8 + 36(1^8) |
293 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 37(1^6) | 2(2^7) + 37(1^7) | 2^8 + 37(1^8) |
294 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 38(1^6) | 2(2^7) + 38(1^7) | 2^8 + 38(1^8) |
295 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 39(1^6) | 2(2^7) + 39(1^7) | 2^8 + 39(1^8) |
296 | 14^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 40(1^6) | 2(2^7) + 40(1^7) | 2^8 + 40(1^8) |
297 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 41(1^6) | 2(2^7) + 41(1^7) | 2^8 + 41(1^8) |
298 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 42(1^6) | 2(2^7) + 42(1^7) | 2^8 + 42(1^8) |
299 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 43(1^6) | 2(2^7) + 43(1^7) | 2^8 + 43(1^8) |
300 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 44(1^6) | 2(2^7) + 44(1^7) | 2^8 + 44(1^8) |
301 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 45(1^6) | 2(2^7) + 45(1^7) | 2^8 + 45(1^8) |
302 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 46(1^6) | 2(2^7) + 46(1^7) | 2^8 + 46(1^8) |
303 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 47(1^6) | 2(2^7) + 47(1^7) | 2^8 + 47(1^8) |
304 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 48(1^6) | 2(2^7) + 48(1^7) | 2^8 + 48(1^8) |
305 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 49(1^6) | 2(2^7) + 49(1^7) | 2^8 + 49(1^8) |
306 | 15^2 + 9^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 50(1^6) | 2(2^7) + 50(1^7) | 2^8 + 50(1^8) |
307 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 2(2^5) | 4(2^6) + 51(1^6) | 2(2^7) + 51(1^7) | 2^8 + 51(1^8) |
308 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 52(1^6) | 2(2^7) + 52(1^7) | 2^8 + 52(1^8) |
309 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 53(1^6) | 2(2^7) + 53(1^7) | 2^8 + 53(1^8) |
310 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 54(1^6) | 2(2^7) + 54(1^7) | 2^8 + 54(1^8) |
311 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 55(1^6) | 2(2^7) + 55(1^7) | 2^8 + 55(1^8) |
312 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 56(1^6) | 2(2^7) + 56(1^7) | 2^8 + 56(1^8) |
313 | 13^2 + 12^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 57(1^6) | 2(2^7) + 57(1^7) | 2^8 + 57(1^8) |
314 | ^2 + ^2 | 2(5^3) + 4^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 58(1^6) | 2(2^7) + 58(1^7) | 2^8 + 58(1^8) |
315 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 59(1^6) | 2(2^7) + 59(1^7) | 2^8 + 59(1^8) |
316 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 60(1^6) | 2(2^7) + 60(1^7) | 2^8 + 60(1^8) |
317 | 14^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 61(1^6) | 2(2^7) + 61(1^7) | 2^8 + 61(1^8) |
318 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 62(1^6) | 2(2^7) + 62(1^7) | 2^8 + 62(1^8) |
319 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 4(2^6) + 63(1^6) | 2(2^7) + 63(1^7) | 2^8 + 63(1^8) |
320 | 16^2 + 8^2 | 5(4^3) | ^4 + ^4 | ^5 + ^5 | 5(2^6) | 2(2^7) + 64(1^7) | 2^8 + 64(1^8) |
321 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 1^6 | 2(2^7) + 65(1^7) | 2^8 + 65(1^8) |
322 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 2(1^6) | 2(2^7) + 66(1^7) | 2^8 + 66(1^8) |
323 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 3(1^6) | 2(2^7) + 67(1^7) | 2^8 + 67(1^8) |
324 | 18^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 4(1^6) | 2(2^7) + 68(1^7) | 2^8 + 68(1^8) |
325 | 15^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 5(1^6) | 2(2^7) + 69(1^7) | 2^8 + 69(1^8) |
326 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 6(1^6) | 2(2^7) + 70(1^7) | 2^8 + 70(1^8) |
327 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 7(1^6) | 2(2^7) + 71(1^7) | 2^8 + 71(1^8) |
328 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 8(1^6) | 2(2^7) + 72(1^7) | 2^8 + 72(1^8) |
329 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 9(1^6) | 2(2^7) + 73(1^7) | 2^8 + 73(1^8) |
330 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 10(1^6) | 2(2^7) + 74(1^7) | 2^8 + 74(1^8) |
331 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 11(1^6) | 2(2^7) + 75(1^7) | 2^8 + 75(1^8) |
332 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 12(1^6) | 2(2^7) + 76(1^7) | 2^8 + 76(1^8) |
333 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 13(1^6) | 2(2^7) + 77(1^7) | 2^8 + 77(1^8) |
334 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 14(1^6) | 2(2^7) + 78(1^7) | 2^8 + 78(1^8) |
335 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 15(1^6) | 2(2^7) + 79(1^7) | 2^8 + 79(1^8) |
336 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 16(1^6) | 2(2^7) + 80(1^7) | 2^8 + 80(1^8) |
337 | 16^2 + 9^2 | ^3 + ^3 | 4^4 + 3^4 | ^5 + ^5 | 5(2^6) + 17(1^6) | 2(2^7) + 81(1^7) | 2^8 + 81(1^8) |
338 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 18(1^6) | 2(2^7) + 82(1^7) | 2^8 + 82(1^8) |
339 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 3(2^5) | 5(2^6) + 19(1^6) | 2(2^7) + 83(1^7) | 2^8 + 83(1^8) |
340 | 14^2 + 12^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 20(1^6) | 2(2^7) + 84(1^7) | 2^8 + 84(1^8) |
341 | ^2 + ^2 | 6^3 + 5^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 21(1^6) | 2(2^7) + 85(1^7) | 2^8 + 85(1^8) |
342 | ^2 + ^2 | 6^3 + 5^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 22(1^6) | 2(2^7) + 86(1^7) | 2^8 + 86(1^8) |
343 | ^2 + ^2 | 7^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 23(1^6) | 2(2^7) + 87(1^7) | 2^8 + 87(1^8) |
344 | ^2 + ^2 | 7^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 24(1^6) | 2(2^7) + 88(1^7) | 2^8 + 88(1^8) |
345 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 25(1^6) | 2(2^7) + 89(1^7) | 2^8 + 89(1^8) |
346 | 15^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 26(1^6) | 2(2^7) + 90(1^7) | 2^8 + 90(1^8) |
347 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 27(1^6) | 2(2^7) + 91(1^7) | 2^8 + 91(1^8) |
348 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 28(1^6) | 2(2^7) + 92(1^7) | 2^8 + 92(1^8) |
349 | ^2 + ^2 | 6^3 + 5^3 + 2^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 29(1^6) | 2(2^7) + 93(1^7) | 2^8 + 93(1^8) |
350 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 30(1^6) | 2(2^7) + 94(1^7) | 2^8 + 94(1^8) |
351 | ^2 + ^2 | 7^3 + 2^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 31(1^6) | 2(2^7) + 95(1^7) | 2^8 + 95(1^8) |
352 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 32(1^6) | 2(2^7) + 96(1^7) | 2^8 + 96(1^8) |
353 | 17^2 + 8^2 | ^3 + ^3 | 4^4 + 3^4 + 2^4 | ^5 + ^5 | 5(2^6) + 33(1^6) | 2(2^7) + 97(1^7) | 2^8 + 97(1^8) |
354 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 34(1^6) | 2(2^7) + 98(1^7) | 2^8 + 98(1^8) |
355 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 35(1^6) | 2(2^7) + 99(1^7) | 2^8 + 99(1^8) |
356 | 16^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 36(1^6) | 2(2^7) + 100(1^7) | 2^8 + 100(1^8) |
357 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 37(1^6) | 2(2^7) + 101(1^7) | 2^8 + 101(1^8) |
358 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 38(1^6) | 2(2^7) + 102(1^7) | 2^8 + 102(1^8) |
359 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 39(1^6) | 2(2^7) + 103(1^7) | 2^8 + 103(1^8) |
360 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 40(1^6) | 2(2^7) + 104(1^7) | 2^8 + 104(1^8) |
361 | 19^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 41(1^6) | 2(2^7) + 105(1^7) | 2^8 + 105(1^8) |
362 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 42(1^6) | 2(2^7) + 106(1^7) | 2^8 + 106(1^8) |
363 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 43(1^6) | 2(2^7) + 107(1^7) | 2^8 + 107(1^8) |
364 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 44(1^6) | 2(2^7) + 108(1^7) | 2^8 + 108(1^8) |
365 | 14^2 + 13^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 45(1^6) | 2(2^7) + 109(1^7) | 2^8 + 109(1^8) |
366 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 46(1^6) | 2(2^7) + 110(1^7) | 2^8 + 110(1^8) |
367 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 47(1^6) | 2(2^7) + 111(1^7) | 2^8 + 111(1^8) |
368 | ^2 + ^2 | 6^3 + 5^3 + 3^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 48(1^6) | 2(2^7) + 112(1^7) | 2^8 + 112(1^8) |
369 | 15^2 + 12^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 49(1^6) | 2(2^7) + 113(1^7) | 2^8 + 113(1^8) |
370 | 17^2 + 9^2 | 3^3 + 7^3 + 0^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 50(1^6) | 2(2^7) + 114(1^7) | 2^8 + 114(1^8) |
371 | ^2 + ^2 | 3^3 + 7^3 + 1^3 | ^4 + ^4 | 3^5 + 4(2^5) | 5(2^6) + 51(1^6) | 2(2^7) + 115(1^7) | 2^8 + 115(1^8) |
372 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 52(1^6) | 2(2^7) + 116(1^7) | 2^8 + 116(1^8) |
373 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 53(1^6) | 2(2^7) + 117(1^7) | 2^8 + 117(1^8) |
374 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 54(1^6) | 2(2^7) + 118(1^7) | 2^8 + 118(1^8) |
375 | ^2 + ^2 | 3(5^3) | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 55(1^6) | 2(2^7) + 119(1^7) | 2^8 + 119(1^8) |
376 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 56(1^6) | 2(2^7) + 120(1^7) | 2^8 + 120(1^8) |
377 | 16^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 57(1^6) | 2(2^7) + 121(1^7) | 2^8 + 121(1^8) |
378 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 58(1^6) | 2(2^7) + 122(1^7) | 2^8 + 122(1^8) |
379 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 59(1^6) | 2(2^7) + 123(1^7) | 2^8 + 123(1^8) |
380 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 60(1^6) | 2(2^7) + 124(1^7) | 2^8 + 124(1^8) |
381 | ^2 + ^2 | 5^3 + 4(4^3) | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 61(1^6) | 2(2^7) + 125(1^7) | 2^8 + 125(1^8) |
382 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 62(1^6) | 2(2^7) + 126(1^7) | 2^8 + 126(1^8) |
383 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 5(2^6) + 63(1^6) | 2(2^7) + 127(1^7) | 2^8 + 127(1^8) |
384 | ^2 + ^2 | 6(4^3) | ^4 + ^4 | ^5 + ^5 | 6(2^6) | 3(2^7) | 2^8 + 128(1^8) |
385 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 1^6 | 3(2^7) + 1^7 | 2^8 + 129(1^8) |
386 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 2(1^6) | 3(2^7) + 2(1^7) | 2^8 + 130(1^8) |
387 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 3(1^6) | 3(2^7) + 3(1^7) | 2^8 + 131(1^8) |
388 | 18^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 4(1^6) | 3(2^7) + 4(1^7) | 2^8 + 132(1^8) |
389 | 17^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 5(1^6) | 3(2^7) + 5(1^7) | 2^8 + 133(1^8) |
390 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 6(1^6) | 3(2^7) + 6(1^7) | 2^8 + 134(1^8) |
391 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 7(1^6) | 3(2^7) + 7(1^7) | 2^8 + 135(1^8) |
392 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 8(1^6) | 3(2^7) + 8(1^7) | 2^8 + 136(1^8) |
393 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 9(1^6) | 3(2^7) + 9(1^7) | 2^8 + 137(1^8) |
394 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 10(1^6) | 3(2^7) + 10(1^7) | 2^8 + 138(1^8) |
395 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 11(1^6) | 3(2^7) + 11(1^7) | 2^8 + 139(1^8) |
396 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 12(1^6) | 3(2^7) + 12(1^7) | 2^8 + 140(1^8) |
397 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 13(1^6) | 3(2^7) + 13(1^7) | 2^8 + 141(1^8) |
398 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 14(1^6) | 3(2^7) + 14(1^7) | 2^8 + 142(1^8) |
399 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 15(1^6) | 3(2^7) + 15(1^7) | 2^8 + 143(1^8) |
400 | 20^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 16(1^6) | 3(2^7) + 16(1^7) | 2^8 + 144(1^8) |
401 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 17(1^6) | 3(2^7) + 17(1^7) | 2^8 + 145(1^8) |
402 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 18(1^6) | 3(2^7) + 18(1^7) | 2^8 + 146(1^8) |
403 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 5(2^5) | 6(2^6) + 19(1^6) | 3(2^7) + 19(1^7) | 2^8 + 147(1^8) |
404 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 20(1^6) | 3(2^7) + 20(1^7) | 2^8 + 148(1^8) |
405 | 18^2 + 9^2 | 6^3 + 5^3 + 4^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 21(1^6) | 3(2^7) + 21(1^7) | 2^8 + 149(1^8) |
406 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 22(1^6) | 3(2^7) + 22(1^7) | 2^8 + 150(1^8) |
407 | ^2 + ^2 | 4^3 + 0^3 + 7^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 23(1^6) | 3(2^7) + 23(1^7) | 2^8 + 151(1^8) |
408 | ^2 + ^2 | 7^3 + 4^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 24(1^6) | 3(2^7) + 24(1^7) | 2^8 + 152(1^8) |
409 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 25(1^6) | 3(2^7) + 25(1^7) | 2^8 + 153(1^8) |
410 | 17^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 26(1^6) | 3(2^7) + 26(1^7) | 2^8 + 154(1^8) |
411 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 27(1^6) | 3(2^7) + 27(1^7) | 2^8 + 155(1^8) |
412 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 28(1^6) | 3(2^7) + 28(1^7) | 2^8 + 156(1^8) |
413 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 29(1^6) | 3(2^7) + 29(1^7) | 2^8 + 157(1^8) |
414 | ^2 + ^2 | ^3 + ^3 | 4^4 + 2(3^4) | ^5 + ^5 | 6(2^6) + 30(1^6) | 3(2^7) + 30(1^7) | 2^8 + 158(1^8) |
415 | ^2 + ^2 | 7^3 + 4^3 + 2^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 31(1^6) | 3(2^7) + 31(1^7) | 2^8 + 159(1^8) |
416 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 32(1^6) | 3(2^7) + 32(1^7) | 2^8 + 160(1^8) |
417 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 33(1^6) | 3(2^7) + 33(1^7) | 2^8 + 161(1^8) |
418 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 34(1^6) | 3(2^7) + 34(1^7) | 2^8 + 162(1^8) |
419 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 35(1^6) | 3(2^7) + 35(1^7) | 2^8 + 163(1^8) |
420 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 36(1^6) | 3(2^7) + 36(1^7) | 2^8 + 164(1^8) |
421 | 15^2 + 14^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 37(1^6) | 3(2^7) + 37(1^7) | 2^8 + 165(1^8) |
422 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 38(1^6) | 3(2^7) + 38(1^7) | 2^8 + 166(1^8) |
423 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 39(1^6) | 3(2^7) + 39(1^7) | 2^8 + 167(1^8) |
424 | 18^2 + 10^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 40(1^6) | 3(2^7) + 40(1^7) | 2^8 + 168(1^8) |
425 | 19^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 41(1^6) | 3(2^7) + 41(1^7) | 2^8 + 169(1^8) |
426 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 42(1^6) | 3(2^7) + 42(1^7) | 2^8 + 170(1^8) |
427 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 43(1^6) | 3(2^7) + 43(1^7) | 2^8 + 171(1^8) |
428 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 44(1^6) | 3(2^7) + 44(1^7) | 2^8 + 172(1^8) |
429 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 45(1^6) | 3(2^7) + 45(1^7) | 2^8 + 173(1^8) |
430 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 46(1^6) | 3(2^7) + 46(1^7) | 2^8 + 174(1^8) |
431 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 47(1^6) | 3(2^7) + 47(1^7) | 2^8 + 175(1^8) |
432 | ^2 + ^2 | 2(6^3) | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 48(1^6) | 3(2^7) + 48(1^7) | 2^8 + 176(1^8) |
433 | 17^2 + 12^2 | 2(6^3) + 1^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 49(1^6) | 3(2^7) + 49(1^7) | 2^8 + 177(1^8) |
434 | ^2 + ^2 | 7^3 + 4^3 + 3^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 50(1^6) | 3(2^7) + 50(1^7) | 2^8 + 178(1^8) |
435 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 3^5 + 6(2^5) | 6(2^6) + 51(1^6) | 3(2^7) + 51(1^7) | 2^8 + 179(1^8) |
436 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 52(1^6) | 3(2^7) + 52(1^7) | 2^8 + 180(1^8) |
437 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 53(1^6) | 3(2^7) + 53(1^7) | 2^8 + 181(1^8) |
438 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 54(1^6) | 3(2^7) + 54(1^7) | 2^8 + 182(1^8) |
439 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 55(1^6) | 3(2^7) + 55(1^7) | 2^8 + 183(1^8) |
440 | ^2 + ^2 | 2(6^3) + 2^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 56(1^6) | 3(2^7) + 56(1^7) | 2^8 + 184(1^8) |
441 | 21^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 57(1^6) | 3(2^7) + 57(1^7) | 2^8 + 185(1^8) |
442 | 19^2 + 9^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 58(1^6) | 3(2^7) + 58(1^7) | 2^8 + 186(1^8) |
443 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 59(1^6) | 3(2^7) + 59(1^7) | 2^8 + 187(1^8) |
444 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 60(1^6) | 3(2^7) + 60(1^7) | 2^8 + 188(1^8) |
445 | 18^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 61(1^6) | 3(2^7) + 61(1^7) | 2^8 + 189(1^8) |
446 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 62(1^6) | 3(2^7) + 62(1^7) | 2^8 + 190(1^8) |
447 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 6(2^6) + 63(1^6) | 3(2^7) + 63(1^7) | 2^8 + 191(1^8) |
448 | ^2 + ^2 | 7(4^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) | 3(2^7) + 64(1^7) | 2^8 + 192(1^8) |
449 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 1^6 | 3(2^7) + 65(1^7) | 2^8 + 193(1^8) |
450 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 2(1^6) | 3(2^7) + 66(1^7) | 2^8 + 194(1^8) |
451 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 3(1^6) | 3(2^7) + 67(1^7) | 2^8 + 195(1^8) |
452 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 4(1^6) | 3(2^7) + 68(1^7) | 2^8 + 196(1^8) |
453 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 5(1^6) | 3(2^7) + 69(1^7) | 2^8 + 197(1^8) |
454 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 6(1^6) | 3(2^7) + 70(1^7) | 2^8 + 198(1^8) |
455 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 7(1^6) | 3(2^7) + 71(1^7) | 2^8 + 199(1^8) |
456 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 8(1^6) | 3(2^7) + 72(1^7) | 2^8 + 200(1^8) |
457 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 9(1^6) | 3(2^7) + 73(1^7) | 2^8 + 201(1^8) |
458 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 10(1^6) | 3(2^7) + 74(1^7) | 2^8 + 202(1^8) |
459 | ^2 + ^2 | 2(6^3) + 3^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 11(1^6) | 3(2^7) + 75(1^7) | 2^8 + 203(1^8) |
460 | ^2 + ^2 | 2(6^3) + 3^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 12(1^6) | 3(2^7) + 76(1^7) | 2^8 + 204(1^8) |
461 | 19^2 + 10^2 | 2(6^3) + 3^3 + 2(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 13(1^6) | 3(2^7) + 77(1^7) | 2^8 + 205(1^8) |
462 | ^2 + ^2 | 2(6^3) + 3^3 + 3(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 14(1^6) | 3(2^7) + 78(1^7) | 2^8 + 206(1^8) |
463 | ^2 + ^2 | 2(6^3) + 3^3 + 4(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 15(1^6) | 3(2^7) + 79(1^7) | 2^8 + 207(1^8) |
464 | 20^2 + 8^2 | 2(6^3) + 3^3 + 5(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 16(1^6) | 3(2^7) + 80(1^7) | 2^8 + 208(1^8) |
465 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 17(1^6) | 3(2^7) + 81(1^7) | 2^8 + 209(1^8) |
466 | ^2 + ^2 | 6^3 + 2(5^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 18(1^6) | 3(2^7) + 82(1^7) | 2^8 + 210(1^8) |
467 | ^2 + ^2 | 6^3 + 2(5^3) + 1^3 | ^4 + ^4 | 3^5 + 7(2^5) | 7(2^6) + 19(1^6) | 3(2^7) + 83(1^7) | 2^8 + 211(1^8) |
468 | 18^2 + 12^2 | 7^3 + 5^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 20(1^6) | 3(2^7) + 84(1^7) | 2^8 + 212(1^8) |
469 | ^2 + ^2 | 7^3 + 5^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 21(1^6) | 3(2^7) + 85(1^7) | 2^8 + 213(1^8) |
470 | ^2 + ^2 | 7^3 + 5^3 + 2(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 22(1^6) | 3(2^7) + 86(1^7) | 2^8 + 214(1^8) |
471 | ^2 + ^2 | 7^3 + 2(4^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 23(1^6) | 3(2^7) + 87(1^7) | 2^8 + 215(1^8) |
472 | ^2 + ^2 | 6^3 + 4(4^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 24(1^6) | 3(2^7) + 88(1^7) | 2^8 + 216(1^8) |
473 | ^2 + ^2 | 7^3 + 2(4^3) + 2(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 25(1^6) | 3(2^7) + 89(1^7) | 2^8 + 217(1^8) |
474 | ^2 + ^2 | 7^3 + 2(4^3) + 3(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 26(1^6) | 3(2^7) + 90(1^7) | 2^8 + 218(1^8) |
475 | ^2 + ^2 | 7^3 + 2(4^3) + 4(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 27(1^6) | 3(2^7) + 91(1^7) | 2^8 + 219(1^8) |
476 | ^2 + ^2 | 7^3 + 5^3 + 2^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 28(1^6) | 3(2^7) + 92(1^7) | 2^8 + 220(1^8) |
477 | ^2 + ^2 | 7^3 + 5^3 + 2^3 + 1^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 29(1^6) | 3(2^7) + 93(1^7) | 2^8 + 221(1^8) |
478 | ^2 + ^2 | 7^3 + 5^3 + 2^3 + 2(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 30(1^6) | 3(2^7) + 94(1^7) | 2^8 + 222(1^8) |
479 | ^2 + ^2 | 7^3 + 5^3 + 2^3 + 3(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 31(1^6) | 3(2^7) + 95(1^7) | 2^8 + 223(1^8) |
480 | ^2 + ^2 | 7^3 + 5^3 + 2^3 + 4(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 32(1^6) | 3(2^7) + 96(1^7) | 2^8 + 224(1^8) |
481 | 16^2 + 15^2 | 7^3 + 5^3 + 2^3 + 5(1^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 33(1^6) | 3(2^7) + 97(1^7) | 2^8 + 225(1^8) |
482 | 19^2 + 11^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 34(1^6) | 3(2^7) + 98(1^7) | 2^8 + 226(1^8) |
483 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 35(1^6) | 3(2^7) + 99(1^7) | 2^8 + 227(1^8) |
484 | 22^2 | 7^3 + 5^3 + 2(2^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 36(1^6) | 3(2^7) + 100(1^7) | 2^8 + 228(1^8) |
485 | ^2 + ^2 | 7^3 + 5^3 + 2(2^3) + 1^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 37(1^6) | 3(2^7) + 101(1^7) | 2^8 + 229(1^8) |
486 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | 2(3^5) | 7(2^6) + 38(1^6) | 3(2^7) + 102(1^7) | 2^8 + 230(1^8) |
487 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 39(1^6) | 3(2^7) + 103(1^7) | 2^8 + 231(1^8) |
488 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 40(1^6) | 3(2^7) + 104(1^7) | 2^8 + 232(1^8) |
489 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 41(1^6) | 3(2^7) + 105(1^7) | 2^8 + 233(1^8) |
490 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 42(1^6) | 3(2^7) + 106(1^7) | 2^8 + 234(1^8) |
491 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 43(1^6) | 3(2^7) + 107(1^7) | 2^8 + 235(1^8) |
492 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 44(1^6) | 3(2^7) + 108(1^7) | 2^8 + 236(1^8) |
493 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 45(1^6) | 3(2^7) + 109(1^7) | 2^8 + 237(1^8) |
494 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 46(1^6) | 3(2^7) + 110(1^7) | 2^8 + 238(1^8) |
495 | ^2 + ^2 | 7^3 + 5^3 + 3^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 47(1^6) | 3(2^7) + 111(1^7) | 2^8 + 239(1^8) |
496 | ^2 + ^2 | 2(6^3) + 4^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 48(1^6) | 3(2^7) + 112(1^7) | 2^8 + 240(1^8) |
497 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 49(1^6) | 3(2^7) + 113(1^7) | 2^8 + 241(1^8) |
498 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 50(1^6) | 3(2^7) + 114(1^7) | 2^8 + 242(1^8) |
499 | ^2 + ^2 | ^3 + ^3 | 4^4 + 3(3^4) | 3^5 + 8(2^5) | 7(2^6) + 51(1^6) | 3(2^7) + 115(1^7) | 2^8 + 243(1^8) |
500 | 20^2 + 10^2 | 4(5^3) | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 52(1^6) | 3(2^7) + 116(1^7) | 2^8 + 244(1^8) |
501 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 53(1^6) | 3(2^7) + 117(1^7) | 2^8 + 245(1^8) |
502 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 54(1^6) | 3(2^7) + 118(1^7) | 2^8 + 246(1^8) |
503 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 55(1^6) | 3(2^7) + 119(1^7) | 2^8 + 247(1^8) |
504 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 56(1^6) | 3(2^7) + 120(1^7) | 2^8 + 248(1^8) |
505 | 21^2 + 8^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 57(1^6) | 3(2^7) + 121(1^7) | 2^8 + 249(1^8) |
506 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 58(1^6) | 3(2^7) + 122(1^7) | 2^8 + 250(1^8) |
507 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 59(1^6) | 3(2^7) + 123(1^7) | 2^8 + 251(1^8) |
508 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 60(1^6) | 3(2^7) + 124(1^7) | 2^8 + 252(1^8) |
509 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 61(1^6) | 3(2^7) + 125(1^7) | 2^8 + 253(1^8) |
510 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 62(1^6) | 3(2^7) + 126(1^7) | 2^8 + 254(1^8) |
511 | ^2 + ^2 | ^3 + ^3 | ^4 + ^4 | ^5 + ^5 | 7(2^6) + 63(1^6) | 3(2^7) + 127(1^7) | 2^8 + 255(1^8) |
512 | 2(16^2) | 8^3 | 2(4^4) | 16(2^5) | 8(2^6) | 4(2^7) | 2(2^8) |
2^9 |
Friedman representations that are also efficient Waring representations. | Narcissistic representations that are also efficient Waring representations (though (0^k)s are technically not allowed in Waring representations. Also, for these we deviate from sorting the powers from largest base to smallest base). |
Several sequences from Sloane's Online Encyclopedia of Integer Sequences were very helpful in the compilation of this table. First of all, Sloane's A002804, which tells us what is the maximum number of kth powers needed to sum up to any integer (as of this writing, the sequence is presented as a "presumed" solution to Waring's problem, but I can safely say that these maximums are correct in the small range I've explored).
Then there's Sloane's A004215, which tells us which integers can not be expressed as a sum of fewer than four squares. Every time I came up with a four-square solution for an integer, I checked if that integer was listed in A004215. If it wasn't, that told me "You can do better," and it took a little more searching, but I was able to get such cases down to three squares.
In general, every time I came up with a solution using the maximum number of kth powers, I checked to see if I could find a solution using at least one fewer power. Of course, it's possible that when I came up with solutions that are one less than the maximum, there are much better solutions of even fewer powers. This is most likely with cubes.
Also helpful, Sloane's A007692, which tells us which integers can be expressed as a sum of two squares in two different ways. In the table, only one solution of squaresums is given for each integer, but A007692 helped me make decisions as to which form is more elegant, and therefore which one to include in the table. (However, depending on your browser, if you put your mouse over some cells, a tooltip will come up with the other squaresum expression).
Of course when two solutions use the same number of kth powers it is difficult to say which one is more elegant. In general, I prefer solutions of distinct powers, none of which is 1^k. Perhaps I feel more strongly about not liking 1^k than I feel about not liking repeated bases, which is why I chose 50 = 2(5^2) over 50 = 7^2 + 1^2.
If you come up with a solution for a given integer that you think is more elegant than the one given in the table, even if it's the same number of powers, please e-mail me. If I use it in the table, I will give you credit on this page.
As noted above, the table does not list solutions of the form n(1^k), though for n between 2^k and 3^k the solutions are almost as boring, specifically, 2^k + (n - 2^k)(1^k). It is after 3^k that the solutions get more interesting, but also trickier to find.